

EVALUATION AND ANTIFUNGAL SUSCEPTIBILITY PATTERN OF CANDIDEMIA IN INTENSIVECARE UNITS

Akanksha Gusain, Dr. Supriya Mahajan*, Dr. Madhusmita Das, Dr. Dalip K Kakru, Nzanroni W Khuvung

PG Student1, Department of Microbiology, SMS&R, Sharda hospital, Greater Noida, India.
Associate Professor2, Department of Microbiology, SMS&R, Sharda hospital, Greater Noida, India.
Assistant Professor3, Department of Microbiology, SMS&R, Sharda hospital, Greater Noida, India.
HOD & Professor4, Department of Microbiology, SMS&R, Sharda hospital, Greater Noida, India.
PG Student5, Department of Microbiology, SMS&R, Sharda hospital, Greater Noida, India.

Corresponding Author: Dr. Supriya Mahajan*
Akanksha Gusain: akankshagusain2203@gmail.com
Dr. Supriya Mahajan: drsupriyamahajan@gmail.com
Dr. Madhusmita Das: madhusmita1906@gmail.com
Dr. Dalip K Kakru: Dalip.kakru@sharda.ac.in
Nzanroni W Khuvung: nzanroni1999@gmail.com

ABSTRACT

Background and objectives: Although *Candida albicans* continues to be the most frequently isolated species in candidemia, recent years have shown a clear shift in the pattern of bloodstream infections, with non-albicans *Candida* (NAC) species increasingly emerging as important causative agents. This study aims to identify the *Candida* species responsible for candidemia, and to evaluate their antifungal susceptibility patterns in ICU settings.

Methods: A cross-sectional study was carried out on 75 patients with clinically suspected candidemia admitted to intensive care units. Speciation and Antifungal susceptibility testing of *Candida* species were performed using the VITEK® 2 Compact system (BioMérieux, France).

Results: The study majorly included male neonates, and confirmed NAC causing candidemia in 24 cases (18.66%), with a median age of 8 days and majority of cases were reported from the NICU (86.66%). Among the organisms detected, non-albicans *Candida* was the most prevalent with 14 (18.66%) isolates. Antifungal testing showed highest resistance with fluconazole and flucytosine.

Interpretations&conclusions: This study underscores the increasing impact of candidemia, marked by the predominance of NAC species and a growing concern of antifungal resistance, especially in the NICU. Voriconazole and amphotericin B demonstrated the greatest effectiveness, whereas reduced sensitivity to fluconazole and flucytosine questions the reliability of current empirical treatment choices. These findings emphasize the importance of routine species identification and antifungal susceptibility testing to ensure timely and targeted management of resistant *Candida* species..

KEYWORDS: Antifungal susceptibility testing – Candidemia - Fluconazole - Non-albicans *Candida* species - VITEK® 2 Compact system (BioMérieux, France)

How to Cite: Akanksha Gusain, Dr. Supriya Mahajan*, Dr. Madhusmita Das, Dr. Dalip K Kakru, Nzanroni W Khuvung, (2026) EVALUATION AND ANTIFUNGAL SUSCEPTIBILITY PATTERN OF CANDIDEMIA IN INTENSIVECARE UNITS, European Journal of Clinical Pharmacy, Vol.8, No.1, pp. 123-130

INTRODUCTION

Candida species are responsible for most opportunistic fungal infections worldwide. Factors such as extremes of age, pregnancy, diabetes mellitus, prolonged use of corticosteroids, extended courses of broad-spectrum antibiotics, and immunocompromised states including AIDS significantly increase susceptibility to *Candida* infections [1].

Candidemia refers to the detection of *Candida* species in the bloodstream and is specifically defined as the isolation of *Candida* species from at least one positive blood culture obtained from either a peripheral vein or a central venous catheter [2].

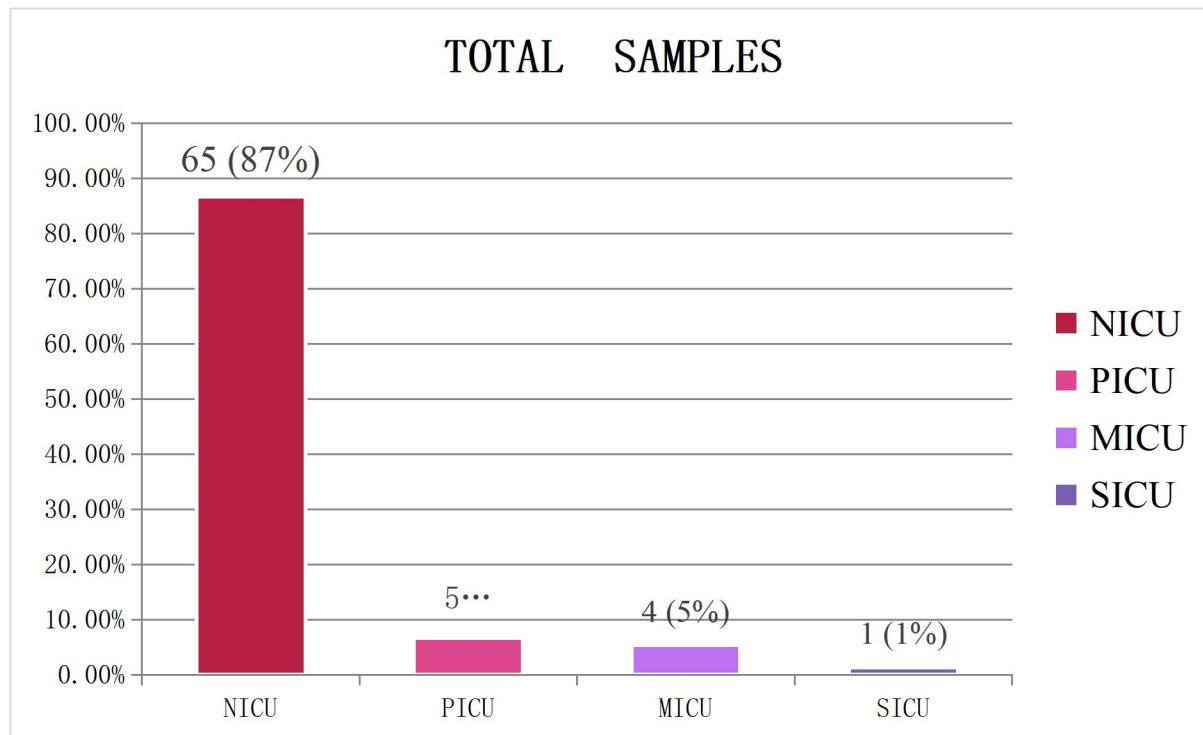
An increasing proportion of cases are now attributed to Non-albicans *Candida* (NAC) species, particularly *Candida glabrata*, *Candida parapsilosis*, and *Candida tropicalis* [3].

Identification of *Candida* species and assessment of their antifungal susceptibility profiles play a crucial role in guiding appropriate therapy and limiting the development of antifungal resistance. In vitro antifungal susceptibility testing (AFST) has gained importance as a valuable tool for clinical decision-making, antifungal drug development, and surveillance of emerging resistance patterns in epidemiological studies [4].

MATERIALS AND METHODS

This cross-sectional study was conducted in the Department of Microbiology of a tertiary care hospital. The study was approved by the Institutional Ethics Committee, and patient confidentiality was maintained throughout. A total of 75 patients of all age groups and both sexes admitted to the ICUs over a period of 12-month, who showed clinical features suggestive of candidemia, were included in the study, and blood samples were collected for fungal culture to identify *Candida* species and to assess their antifungal resistance patterns.

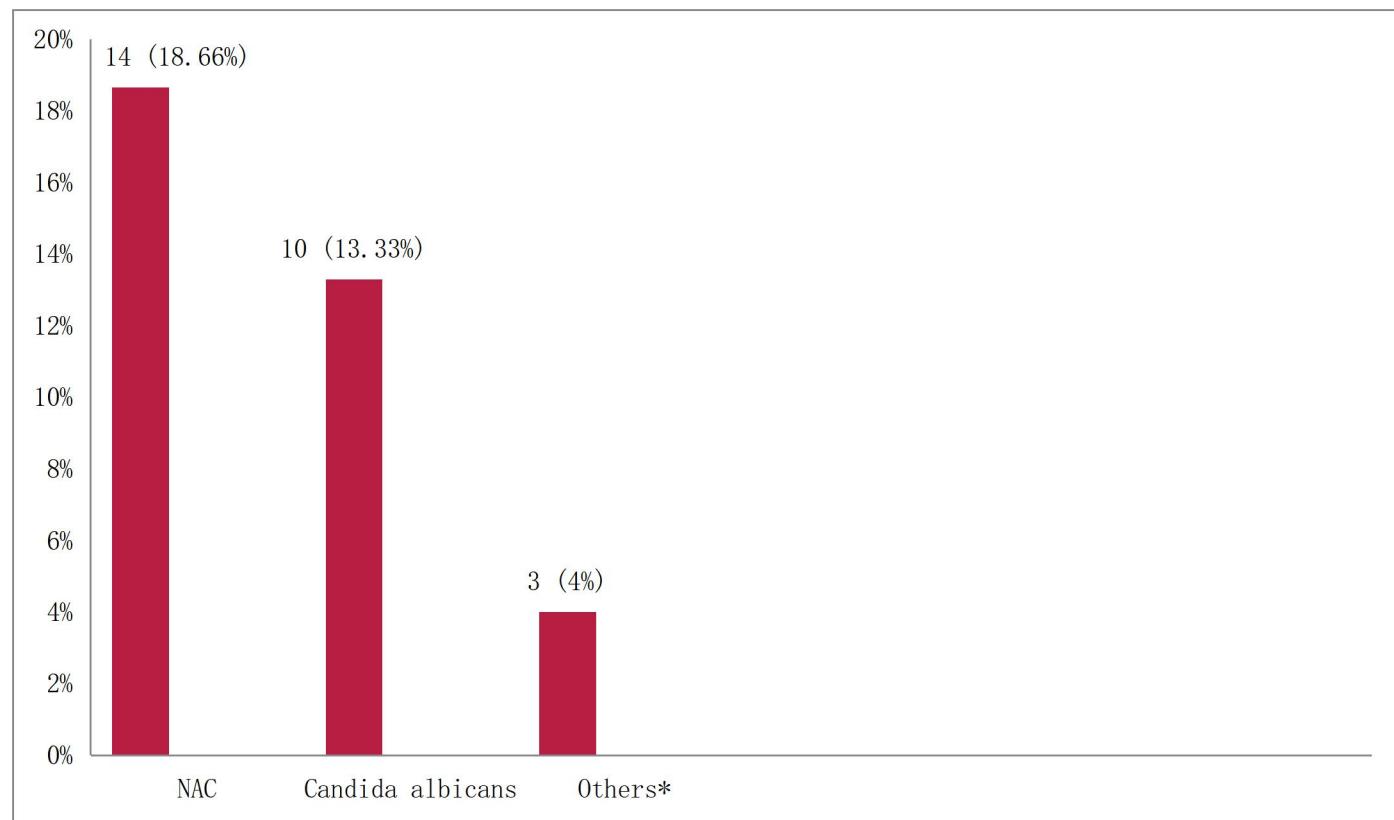
Isolation and Identification of NAC species: Positive blood culture bottles were detected using the automated BacT/ALERT 3D blood culture system (BioMérieux, France). Specimens were cultured on Sabouraud dextrose agar and incubated until growth appeared, followed by microscopic examination using Gram staining. Gram-positive, oval, budding yeast-like cells suggestive of *Candida* were screened with the germ tube test to provisionally differentiate *Candida albicans* from NAC species. These isolates were then identified within 4-6 hours to the species level using VITEK 2 YST card in the automated VITEK® 2 Compact system (BioMérieux, France).


Antifungal susceptibility testing: Antifungal susceptibility profiling was carried out using the automated VITEK® 2 Compact system (BioMérieux, France). The VITEK 2 AST-YS08 card was employed to assess the activity of amphotericin B, fluconazole, voriconazole, caspofungin, micafungin, and 5-flucytosine (5-FC). The susceptibility results were available approximately within 16-18 hours.

RESULTS

Demographic characteristics of the study population: A total of 75 patients were analysed. Among them, 52(69.33%) were male and 23(30.66%) were female, giving a male-to-female ratio of 2:1. Among 75 samples, significant growth in fungal culture was observed in 27/75 (36%) cases and 24/75 (32%) were identified as cases of candidemia. The present study also showed that the candidemia in males was seen in 15/24(62.5%) patients in contrast with that in females[9/24(37.5%)], indicating male predominance with a median age of 8 days.

Distribution of patients across different Intensive Care Units (ICUs): As demonstrated in Figure 1, majority were admitted to the Neonatal Intensive Care Unit (NICU), accounting for 65(86.66%) cases, with *Candida* isolates detected in 23 (35.38%) of them. The Paediatric Intensive Care Unit (PICU) accounted for 5(6.66%) cases, followed by Medical Intensive Care Unit (MICU) with 4(5.33%) cases, followed by Surgical Intensive Care Unit (SICU) with 1 (1.33%) case.


FIGURE 1: ICU wise distribution of patients (n=75)

NICU:Neonatal Intensive Care Unit; PICU: Paediatric Intensive Care Unit; MICU: Medical Intensive Care Unit; SICU: Surgical Intensive Care Unit.

Distribution of fungal species isolated from ICU patients: As shown in Figure 2, among the 27 fungal isolates, NAC was the most prevalent with 14 (18.66%) isolates, where the distribution was as follows: *Candida krusei* – 6/14 (42.85%); *Candida parapsilosis* – 4/14 (28.57%); *Candida tropicalis* – 3/14 (21.42%); *Candida ciferrii* – 1/14 (7.14%). This was followed by *Candida albicans* with 10 (13.33%) isolates and *Cryptococcus laurentii* was detected in 3 (4%) isolates. Among the 24 cases of candidemia, NAC species accounted for 14/24 (58.33%) isolates, whereas *Candida albicans* comprised 10/24 (41.66%) isolates.

FIGURE2: Overall distribution of fungal pathogens in ICU (n =75)

*Others - *Cryptococcus laurentii*: 3(4%); NAC: *non-albicans candida*

Antifungal susceptibility pattern of NAC species: As shown in Table 1, Voriconazole demonstrated as the most effective agent, with 21 isolates (87.5%) sensitive along with that Amphotericin B demonstrated sensitivity in 20 isolates (83.3%). Micafungin showed good efficacy, with 18 isolates (75%) being sensitive. In contrast, lower susceptibility was observed with Fluconazole (62.5% sensitive) and Caspofungin (58.3% sensitive), while Flucytosine showed equal proportions of sensitive (50%) and resistant (50%) isolates.

TABLE 1: Overall Antifungal susceptibility pattern of *Candida* species (n=24)

ANTIFUNGAL AGENTS	SENSITIVE (%)	INTERMEDIATE(%)	RESISTANT (%)
FLUCONAZOLE	15 (62.5)	0	9 (37.5)
VORICONAZOLE	21 (87.5)	1 (4.1)	2 (8.3)
CASPOFUNGIN	14 (58.3)	3 (12.5)	7 (29.1)
MICAFUNGIN	18 (75)	0	6 (25)
AMPHOTERICIN-B	20 (83.3)	1 (4.1)	3 (12.5)
FLUCYTOSINE	12 (50)	0	12 (50)

Table 2 outlines the antifungal susceptibility patterns of different *Candida* isolates, where S [n (%)] denotes the number and percentage of susceptible isolates. Overall, *C. albicans* showed relatively higher susceptibility to most antifungal agents, with the highest sensitivity observed to Amphotericin B (41.66%) followed by Voriconazole and Micafungin (37.5%). In contrast, NAC isolates exhibited more variable and generally lower susceptibility patterns. *C. parapsilosis* demonstrated moderate sensitivity across all tested drugs (16.66%), whereas *C. krusei* and *C. tropicalis* showed limited response, particularly to Fluconazole and Echinocandins. Notably, the single isolate of *Candida ciferrii* was resistant to all antifungals tested.

Table2: Susceptibility pattern of antifungals in different isolates of *Candida* species(n=24)

Isolates [n (%)]	Fluconazole S[n (%)]	Voriconazole S[n (%)]	Caspofungin S[n (%)]	Micafungin S[n (%)]	Amp-B S[n (%)]	Flucytosine S[n (%)]
<i>C. albicans</i> [10(41.6)]	8 (33.33)	9 (37.5)	8 (33.33)	9 (37.5)	10 (41.66)	7 (29.16)
<i>C. krusei</i> [6(25)]	1 (4.16)	6 (25)	1 (4.16)	4 (16.66)	4 (16.66)	1 (4.16)
<i>C. parapsilosis</i> [4(16.6)]	4 (16.66)	4 (16.66)	4 (16.66)	4 (16.66)	4 (16.66)	4 (16.66)
<i>C. tropicalis</i> [3(12.5)]	2 (8.33)	2 (8.33)	1 (4.16)	1 (4.16)	2 (8.33)	0
<i>C. ciferrii</i> [1(4.1)]	0	0	0	0	0	0

Risk Factors: As shown in Table 3, Neonatal sepsis emerged as a major contributor, seen in 14 of 24 candidemia cases (58.33%) whereas adult sepsis and diabetes were the least important risk factors in this study. Multiple *Candida* species were involved, with *C. albicans* being most frequently identified one. One case of respiratory distress showed the growth of *C. ciferrii*, suggesting that antibiotic pressure favours opportunistic fungal infection. Fisher's Exact test analysis demonstrated that although 58.33% of neonatal sepsis were associated with candidemia but it is statistically not significant. Also, adult sepsis and diabetes mellitus were found to be significantly associated with non-candidemia cases as compared to candidemia cases in this study. Other variables including low birth weight, prior exposure to broad-spectrum antibiotics, and respiratory distress did not show a statistically significant association ($p > 0.05$).

TABLE 3: Risk factors among all Candidemia cases (n=24)

RISK FACTORS	Positive [n (%)]	Negative[n (%)]	p value	Candida spp.
NEONATALSEPSIS	14(58.33)	10(41.6)	0.387	<ul style="list-style-type: none"> • <i>Candida albicans</i> (6) • <i>Candida krusei</i> (3) • <i>Candida parapsilosis</i>(3) • <i>Candida tropicalis</i> (2)
SEPSIS (IN ADULTS)	1(4.1)	23(95.8)	<0.001	<ul style="list-style-type: none"> • <i>Candida albicans</i> (1)
DIABETES MELLITUS	1(4.1)	23(95.8)	<0.001	<ul style="list-style-type: none"> • <i>Candida albicans</i> (1)
PRE-TERM BABY	16(66.6)	8(33.3)	0.042	<ul style="list-style-type: none"> • <i>Candida albicans</i> (5) • <i>Candida krusei</i> (5) • <i>Candida parapsilosis</i>(3) • <i>Candida tropicalis</i> (2)
LOW BIRTH WEIGHT	9(37.5)	15(62.5)	0.148	<ul style="list-style-type: none"> • <i>Candida albicans</i> (3) • <i>Candida krusei</i> (2) • <i>Candida parapsilosis</i>(2) • <i>Candida tropicalis</i> (2)
BROAD SPECTRUM ANTIBIOTICS	13(54.1)	11(45.8)	0.773	<ul style="list-style-type: none"> • <i>Candida albicans</i> (5) • <i>Candida krusei</i> (3) • <i>Candida parapsilosis</i>(3) • <i>Candida tropicalis</i> (1) • <i>Candida ciferrii</i> (1)
RESPIRATORY DISTRESS	14(58.3)	10(41.6)	0.387	<ul style="list-style-type: none"> • <i>Candida albicans</i> (7) • <i>Candida krusei</i> (3) • <i>Candida tropicalis</i> (3) • <i>Candida ciferrii</i> (1)

A detailed summary of all 24 candidemia cases is highlighted in table 4 which clearly depicts that *C.tropicalis* and *C.krusei* in this study have shown maximum antifungal resistance.

TABLE 4: SUMMARY OF ALL CANDIDEMIA CASES (n=24)

CASE	A/S	ORGANISM	RISK	DRUG SUSCEPTIBILITY					
				Flu	V	C	M	A	F
1	6D/F	<i>C. albicans</i>	Neonatal sepsis; Low birth weight; Broad-spectrum antibiotics use; Respiratory distress	S	S	S	S	S	S
2	8D/F	<i>C. krusei</i>	Neonatal sepsis; Preterm baby; Broad-spectrum antibiotics use	S	S	S	S	S	S
3	7D/M	<i>C. krusei</i>	Neonatal sepsis; Low birth weight; Respiratory distress	R	S	I	S	R	R

4	7D/F	<i>C. krusei</i>	Preterm baby; Low birth weight	R	S	I	S	S	R
5	4D/F	<i>C. krusei</i>	Preterm baby; Low birth weight	R	S	I	S	R	R
6	20D/M	<i>C. albicans</i>	Neonatal Sepsis; Preterm baby	S	S	S	S	S	S
7	4D/F	<i>C. parapsilosis</i>	Neonatal Sepsis; Low birth weight; Broad-spectrum antibiotics use	S	S	S	S	S	S
8	12D/M	<i>C. parapsilosis</i>	Neonatal Sepsis; Preterm baby; Low birth weight	S	S	S	S	S	S
9	6D/M	<i>C. parapsilosis</i>	Preterm baby; Broad-spectrum antibiotics use	S	S	S	S	S	S
10	8D/M	<i>C. albicans</i>	Broad-spectrum antibiotics use; Respiratory distress; Oral Candidiasis	S	S	S	S	S	S
11	7D/M	<i>C. parapsilosis</i>	Neonatal Sepsis; Preterm baby; Broad-spectrum antibiotics use	S	S	S	S	S	S
12	19D/M	<i>C. albicans</i>	Preterm Baby; Respiratory distress; Suspected Meningitis	S	R	R	S	S	S
13	18D/M	<i>C. albicans</i>	Respiratory distress	S	S	S	S	S	S
14	7D/M	<i>C. albicans</i>	Respiratory distress	R	S	R	R	S	R
15	9D/F	<i>C. albicans</i>	Neonatal sepsis; Preterm baby; Broad-spectrum antibiotics use; Respiratory distress	S	S	S	S	S	S
16	5D/M	<i>C. tropicalis</i>	Neonatal sepsis; Preterm baby; Low birth weight; Broad-spectrum antibiotics use; Respiratory distress	S	R	R	R	R	R
17	8D/M	<i>C. tropicalis</i>	Neonatal Sepsis; Preterm Baby; Low birth weight; Respiratory distress	S	S	S	S	S	R
18	10D/M	<i>C. tropicalis</i>	Respiratory distress	R	S	R	R	S	R
19	10D/M	<i>C. albicans</i>	Neonatal sepsis; Preterm Baby; Broad-spectrum antibiotics use	S	S	S	S	S	R
20	74/F	<i>C. albicans</i>	Sepsis; Diabetes; Broad-spectrum antibiotics use	R	S	S	S	S	R
21	8D/M	<i>C. krusei</i>	Early onset neonatal sepsis; Preterm baby; Broad-spectrum antibiotics use; Respiratory distress; Pneumonia	R	S	R	R	S	R
22	6D/M	<i>C. krusei</i>	Preterm baby; Broad-spectrum antibiotics use; Respiratory distress	R	S	R	R	S	R
23	6D/M	<i>C. albicans</i>	Neonatal Sepsis; Preterm baby; Low birth weight; Respiratory distress	S	S	S	S	S	S
24	10D/M	<i>C. ciferrii</i>	Neonatal sepsis; Preterm baby; Broad-spectrum antibiotics use; Respiratory distress	R	I	R	R	I	R

S: Sensitive; R: Resistant; I: Intermediate

DISCUSSION

In this ICU-based study of 75 patients, predominantly from the NICU, candidemia was identified in 24 cases (32.0%), a higher prevalence than reported by Bansal J et al. (6.2%) [5] and Biswas B et al. (9.65%) [6], though direct comparisons are difficult due to differing denominators (our study reports proportion among symptomatic samples rather than all admissions). A male predominance (62.5%) was observed, with a median age of 8 days, highlighting the greater burden of candidemia in neonates which is in accordance with other studies [7,8,9]. In contrast, studies by Yılmaz Karadağ F et al. reported a nearly equal gender distribution (52.1% males and 47.9% females) among 165 candidemia patients, representing an older, predominantly adult population [10] whereas Ünal et al. reported a similar male predominance (62.6% males vs. 37.4% females) but in an older cohort, with a median age of 61 years [11].

The predominance of non-albicans *Candida* (NAC) in our study, accounting for 14 (58.33%) isolates, reflects the ongoing shift away from *C. albicans* (41.66%) and aligns with reports by Shettigar CG et al. [12] and Bansal J et al. [5], who documented NAC rates of 64.81% and 68% respectively in candidemia. Most cases occurred in the NICU, where NAC accounted for 14/23 (61%) cases whereas *Candida albicans*, accounted for 9/23 (39%) isolates. Among NAC species, *C. krusei* was the leading species (42.85%), followed by *C. parapsilosis* (28.57%), *C. tropicalis* (21.42%), and *C. ciferrii* (7.14%). Only a single isolate of *C. albicans* (4.1%) was detected in the MICU. These findings suggest that neonates are at a higher risk for developing candidemia, indicating increased vulnerability of neonates due to factors such as immature immunity, prematurity, and invasive interventions, as also highlighted by Bhushan S et al. [7].

The rising isolation of NAC species in ICUs is clinically significant due to their reduced susceptibility to commonly used antifungals, particularly fluconazole [13]. In this study, 9/24 (37.5%) candidemia cases demonstrated fluconazole resistance; of which *C. albicans* was isolated in 2/9 (22.2%) cases whereas NAC was isolated in 7/9 (77.8%) cases which is in accordance with other studies that have also shown reduced susceptibility of fluconazole among NAC species [12,13]. Out of the 7 NAC spp. in our study; *C. krusei* was isolated in 5/7 (71.4%) cases showing maximum fluconazole resistance with *C. tropicalis* and *C. ciferrii* being isolated in one case each. This is in accordance with other studies which have shown emerging fluconazole resistance in *C. krusei* isolates [7,14]. Notably, two *C. krusei* cases (cases 3 and 5, Table 4) showed concurrent resistance to fluconazole and amphotericin B, restricting effective treatment options to echinocandins and voriconazole.

The antifungal susceptibility pattern observed in this study highlights key clinical concerns. While high sensitivity to voriconazole (87.5%) and amphotericin B (83.3%) supports their use as reliable empiric therapies, the lower susceptibility to fluconazole (62.5%), caspofungin (58.3%), and flucytosine (50%) signals emerging resistance among *Candida* species, reinforcing the need for routine species identification and susceptibility testing. Similar trends have been reported globally, including a paediatric candidemia study by Ahmad S et al., which documented *C. albicans* sensitivity to voriconazole (71.4 %) and amphotericin B (62.9 %) but only 57.1 % sensitivity to fluconazole; NAC in that study showed 67.8 % sensitivity to fluconazole and 62.2 % to amphotericin B [15]. In the present study, echinocandin resistance was noted in 6/24 (25%) cases, with *C. krusei*, *C. tropicalis*, *C. albicans* and *C. ciferrii* accounting for 2 (33.3%), 2 (33.3%), 1 (16.7%) and 1 (16.7%) isolates respectively, a finding that contrasts sharply with European surveillance data from 2024 reporting minimal echinocandin resistance (median 0.5% in *C. glabrata* and 0% in other major species) [16].

The reduced antifungal susceptibility of NAC species observed in our study is alarming, as these organisms commonly possess intrinsic or acquired resistance mechanisms such as efflux pumps and ERG11 mutations, particularly in *C. tropicalis* [17]. The isolation of a pan-resistant *C. ciferrii* strain highlights the capacity of rare *Candida* species to cause highly drug-resistant ICU-associated candidemia, emphasizing the need for continuous surveillance; this is supported by Olander A et al., who reported a *C. ciferrii* isolate with MIC values >32 for fluconazole and posaconazole in a cystic fibrosis patient [18].

In summary, the study highlights a high burden of candidemia in the NICU, with NAC species predominating and showing varied antifungal susceptibility patterns, emphasizing the need for routine species-level identification and susceptibility testing of all bloodstream *Candida* isolates in ICU settings. Given the favourable susceptibility profile and increasing use of voriconazole in neonates, standardized dosing guidelines are urgently required; as noted by S. Bhushan et al. [7], no universally accepted dosing recommendations currently exist for newborns and young children, although a single-centre study from China suggests an intravenous dose of 5–7 mg/kg every 12 hours may be suitable for children under two years, particularly in Asian populations [19]. Strengthening infection prevention measures, minimizing unnecessary antifungal use, and adopting rapid diagnostic tools and molecular assays may help reduce complications. Overall, the findings stress the importance of localized antifungal stewardship and tailored management strategies, with early diagnosis and targeted therapy being crucial to curb the rising threat of resistant NAC infections in critically ill patients.

DECLARATIONS

Conflicts of interest: There is no any conflict of interest associated with this study

Consent to participate: There is consent to participate.

Consent for publication: There is consent for the publication of this paper.

Authors' contributions: Author equally contributed the work.

REFERENCES

- [1] Samyuktha AA, Saikumar C. Isolation, Identification and Speciation of *Candida* Species from Various Clinical Specimens in a Tertiary Care Hospital in Chennai. Sch. J. App. Med. Sci., 2017; 5(8F):3460-3468.
- [2] Kullberg BJ, Arendrup MC. Invasive Candidiasis. N Engl J Med. 2015 Oct 08;373(15):1445-56.
- [3] Pfaller MA, Diekema DJ, Turnidge JD, Castanheira M, Jones RN. Twenty Years of the SENTRY Antifungal Surveillance Program: Results for *Candida* Species From 1997-2016. Open Forum Infect Dis. 2019 Mar;6(Suppl 1):S79-S94.
- [4] Warghade AP, Mudey G, Meshram S, Kombe S, Shaw D. Characterization and Susceptibility Pattern of *Candida* Species from Various Clinical Samples in a Rural Tertiary Care Hospital. J Pure Appl Microbiol. 2023;17(3):1880-1886. doi: 10.22207/JPAM.17.3.53.

- [5] Bansal J, Goel V, Singh K, Sahni AK, Mukhopadhyay S, Singh MK. Prevalence and antifungal susceptibility of *Candida* species in bloodstream infections among pediatric patients in a tertiary care hospital. *J Popul Ther Clin Pharmacol.* 2025;32(4):191-198. doi:10.53555/s51mpj44.
- [6] Biswas B, Sharma AK, Seema K, Kumar A, Boipai M, Kumar M. Emerging threat of candida resistance among neonates at a teaching institute of Jharkhand. *J Family Med Prim Care.* 2023 May;12(5):946-952. doi: 10.4103/jfmpc.jfmpc_2104_22. Epub 2023 May 31. PMID: 37448944; PMCID: PMC10336938.
- [7] Bhushan S, Mahajan S, Sen A. Rare case of early neonatal sepsis caused by *Candida krusei* successfully treated with voriconazole. *Med Mycol Case Rep.* 2024 Jul9;45:100659. doi: 10.1016/j.mmcr.2024.100659. PMID: 39108978; PMCID: PMC11301222.
- [8] Warris A, Pana ZD, Oletto A, Lundin R, Castagnola E, Lehrnbecher T, Groll AH, Roilides E; EUROCANDY Study Group. Etiology and Outcome of Candidemia in Neonates and Children in Europe: An 11-year Multinational Retrospective Study. *Pediatr Infect Dis J.* 2020 Feb;39(2):114-120. doi: 10.1097/INF.0000000000002530. PMID: 31725552; PMCID: PMC7208278.
- [9] Barton M, Shen A, O'Brien K, Robinson JL, Davies HD, Simpson K, et al. Early-Onset Invasive Candidiasis in Extremely Low Birth Weight Infants: Perinatal Acquisition Predicts Poor Outcome. *Clin Infect Dis.* 2017 Apr 1;64(7):921-927. doi: 10.1093/cid/cix001. PMID: 28077516.
- [10] Yılmaz Karadağ F, Öztürk Engin D, Büber AA, Görmüş T, Arslan E, Çetin AŞ, et al. Evaluation of candidemia cases in the intensive care unit of a tertiary training hospital during the period of COVID-19 pandemic. *BMC Infect Dis.* 2025 Feb 28;25(1):288. doi: 10.1186/s12879-025-10688-x. PMID: 40021959; PMCID: PMC11869554.
- [11] Ünal N, Karakoyun AS, Ünal İ, Turunç T, Lass-Flörl C, İlkit M. Epidemiological characteristics and mortality predictors of candidemia due to *Candida albicans*: a single-center experience from Türkiye. *J Fungi.* 2025;11:788. doi:10.3390/jof1110788.
- [12] Shettigar CG, Shettigar S. Non albicans Candidemia: an emerging menace in neonatal intensive care unit. *Int J Contemp Pediatr [Internet].* 2018 Feb. 22 [cited 2025 Dec. 28];5(2):436-41.
- [13] Whaley SG, Berkow EL, Rybak JM, Nishimoto AT, Barker KS, Rogers PD. Azole Antifungal Resistance in *Candida albicans* and Emerging Non-albicans Candida Species. *Front Microbiol.* 2017 Jan 12;7:2173. doi: 10.3389/fmicb.2016.02173. PMID: 28127295; PMCID: PMC5226953.
- [14] Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Nagy E, Dobiasova S, et al.; Global Antifungal Surveillance Group. *Candida krusei*, a multidrug-resistant opportunistic fungal pathogen: geographic and temporal trends from the ARTEMIS DISK Antifungal Surveillance Program, 2001 to 2005. *J Clin Microbiol.* 2008 Feb;46(2):515-21. doi: 10.1128/JCM.01915-07. Epub 2007 Dec 12. PMID: 18077633; PMCID: PMC2238087.
- [15] Ahmad S, Kumar S, Rajpal K, Sinha R, Kumar R, Muni S, et al. Candidemia Among ICU Patients: Species Characterisation, Resistance Pattern and Association With Candida Score: A Prospective Study. *Cureus.* 2022 Apr 29;14(4):e24612. doi: 10.7759/cureus.24612. PMID: 35651467; PMCID: PMC9138890.
- [16] Odoj K, Garlasco J, Pezzani MD, Magnabosco C, Ortiz D, Manco F, et al. Tracking Candidemia Trends and Antifungal Resistance Patterns across Europe: An in-depth analysis of surveillance systems and surveillance studies. *J Fungi.* 2024;10(10):685. doi:10.3390/jof10100685.
- [17] Forastiero A, Mesa-Arango AC, Alatruey-Izquierdo A, Alcazar-Fuoli L, Bernal-Martinez L, Pelaez T, et al. *Candida tropicalis* antifungal cross-resistance is related to different azole target (Erg11p) modifications. *Antimicrob Agents Chemother.* 2013 Oct;57(10):4769-81. doi: 10.1128/AAC.00477-13. Epub 2013 Jul 22. PMID: 23877676; PMCID: PMC3811422.
- [18] Olander A, Bogut A, Dąbrowski W, Pietrzak DJ, Szukała M, Wójtowicz-Bobin M, et al. Analysis of Antifungal Drug Resistance Among *Candida* Spp. and Other Pathogenic Yeasts Isolated from Patients in Eastern Poland: Diagnostic Problems. *Infect Drug Resist.* 2025 Apr 29;18:2187-2199. doi: 10.2147/IDR.S504516. Erratum in: *Infect Drug Resist.* 2025 May 18;18:2597-2598. doi: 10.2147/IDR.S539830. PMID: 40321598; PMCID: PMC12049117.
- [19] Liu L, Zhou X, Wu T, Jiang H, Yang S, Zhang Y. Dose optimisation of voriconazole with therapeutic drug monitoring in children: a single-centre experience in China. *Int J Antimicrob Agents.* 2017 Apr;49(4):483-487. doi: 10.1016/j.ijantimicag.2016.11.028. Epub 2017 Jan 31. PMID: 28159657.